Properties

Label 2312.61
Modulus $2312$
Conductor $2312$
Order $272$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([0,136,259]))
 
Copy content pari:[g,chi] = znchar(Mod(61,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(2312\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.bn

\(\chi_{2312}(5,\cdot)\) \(\chi_{2312}(29,\cdot)\) \(\chi_{2312}(37,\cdot)\) \(\chi_{2312}(45,\cdot)\) \(\chi_{2312}(61,\cdot)\) \(\chi_{2312}(109,\cdot)\) \(\chi_{2312}(125,\cdot)\) \(\chi_{2312}(133,\cdot)\) \(\chi_{2312}(141,\cdot)\) \(\chi_{2312}(165,\cdot)\) \(\chi_{2312}(173,\cdot)\) \(\chi_{2312}(181,\cdot)\) \(\chi_{2312}(197,\cdot)\) \(\chi_{2312}(245,\cdot)\) \(\chi_{2312}(261,\cdot)\) \(\chi_{2312}(269,\cdot)\) \(\chi_{2312}(277,\cdot)\) \(\chi_{2312}(301,\cdot)\) \(\chi_{2312}(309,\cdot)\) \(\chi_{2312}(317,\cdot)\) \(\chi_{2312}(333,\cdot)\) \(\chi_{2312}(381,\cdot)\) \(\chi_{2312}(397,\cdot)\) \(\chi_{2312}(405,\cdot)\) \(\chi_{2312}(413,\cdot)\) \(\chi_{2312}(437,\cdot)\) \(\chi_{2312}(445,\cdot)\) \(\chi_{2312}(453,\cdot)\) \(\chi_{2312}(469,\cdot)\) \(\chi_{2312}(517,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

Values on generators

\((1735,1157,1737)\) → \((1,-1,e\left(\frac{259}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{123}{272}\right)\)\(e\left(\frac{151}{272}\right)\)\(e\left(\frac{161}{272}\right)\)\(e\left(\frac{123}{136}\right)\)\(e\left(\frac{109}{272}\right)\)\(e\left(\frac{9}{68}\right)\)\(e\left(\frac{1}{136}\right)\)\(e\left(\frac{113}{136}\right)\)\(e\left(\frac{3}{68}\right)\)\(e\left(\frac{93}{272}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(61,a) \;\) at \(\;a = \) e.g. 2