sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2312, base_ring=CyclotomicField(272))
M = H._module
chi = DirichletCharacter(H, M([0,136,125]))
pari:[g,chi] = znchar(Mod(29,2312))
| Modulus: | \(2312\) | |
| Conductor: | \(2312\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(272\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2312}(5,\cdot)\)
\(\chi_{2312}(29,\cdot)\)
\(\chi_{2312}(37,\cdot)\)
\(\chi_{2312}(45,\cdot)\)
\(\chi_{2312}(61,\cdot)\)
\(\chi_{2312}(109,\cdot)\)
\(\chi_{2312}(125,\cdot)\)
\(\chi_{2312}(133,\cdot)\)
\(\chi_{2312}(141,\cdot)\)
\(\chi_{2312}(165,\cdot)\)
\(\chi_{2312}(173,\cdot)\)
\(\chi_{2312}(181,\cdot)\)
\(\chi_{2312}(197,\cdot)\)
\(\chi_{2312}(245,\cdot)\)
\(\chi_{2312}(261,\cdot)\)
\(\chi_{2312}(269,\cdot)\)
\(\chi_{2312}(277,\cdot)\)
\(\chi_{2312}(301,\cdot)\)
\(\chi_{2312}(309,\cdot)\)
\(\chi_{2312}(317,\cdot)\)
\(\chi_{2312}(333,\cdot)\)
\(\chi_{2312}(381,\cdot)\)
\(\chi_{2312}(397,\cdot)\)
\(\chi_{2312}(405,\cdot)\)
\(\chi_{2312}(413,\cdot)\)
\(\chi_{2312}(437,\cdot)\)
\(\chi_{2312}(445,\cdot)\)
\(\chi_{2312}(453,\cdot)\)
\(\chi_{2312}(469,\cdot)\)
\(\chi_{2312}(517,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1735,1157,1737)\) → \((1,-1,e\left(\frac{125}{272}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 2312 }(29, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{261}{272}\right)\) | \(e\left(\frac{201}{272}\right)\) | \(e\left(\frac{63}{272}\right)\) | \(e\left(\frac{125}{136}\right)\) | \(e\left(\frac{19}{272}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{95}{136}\right)\) | \(e\left(\frac{127}{136}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{131}{272}\right)\) |
sage:chi.jacobi_sum(n)