Properties

Label 22848.bcd
Modulus $22848$
Conductor $7616$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([0,33,0,40,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2077,22848)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(22848\)
Conductor: \(7616\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 7616.ny
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{22848}(2077,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{22848}(2173,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{22848}(3253,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{22848}(5197,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{22848}(5437,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{22848}(7213,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{22848}(8461,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{22848}(10477,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{22848}(11077,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{22848}(14341,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{22848}(18133,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{22848}(18469,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{22848}(21397,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{22848}(21661,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{22848}(21733,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{22848}(22837,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{16}\right)\)