Properties

Label 2268.co
Modulus $2268$
Conductor $567$
Order $27$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(54)) M = H._module chi = DirichletCharacter(H, M([0,46,36])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(25,2268)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2268\)
Conductor: \(567\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(27\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 567.bi
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 27 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{2268}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2268}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2268}(277,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2268}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{2268}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2268}(625,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2268}(781,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2268}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2268}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2268}(1129,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{2268}(1285,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2268}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2268}(1537,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2268}(1633,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2268}(1789,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2268}(1885,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{2268}(2041,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2268}(2137,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{2}{9}\right)\)