Properties

Label 2268.bp
Modulus $2268$
Conductor $189$
Order $9$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,4,6])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(289,2268)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2268\)
Conductor: \(189\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(9\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 189.u
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 9.9.3691950281939241.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{2268}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(1\)
\(\chi_{2268}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\)
\(\chi_{2268}(1045,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(1\)
\(\chi_{2268}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\)
\(\chi_{2268}(1801,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(1\)
\(\chi_{2268}(1873,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(1\)