Properties

Label 189.u
Modulus $189$
Conductor $189$
Order $9$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([2,12]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(4,189))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(189\)
Conductor: \(189\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(9\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 9.9.3691950281939241.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(17\) \(19\)
\(\chi_{189}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{189}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{189}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{189}(79,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{189}(130,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{189}(142,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)