sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2268, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([27,16,27]))
pari:[g,chi] = znchar(Mod(979,2268))
Modulus: | \(2268\) | |
Conductor: | \(2268\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(54\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2268}(139,\cdot)\)
\(\chi_{2268}(223,\cdot)\)
\(\chi_{2268}(391,\cdot)\)
\(\chi_{2268}(475,\cdot)\)
\(\chi_{2268}(643,\cdot)\)
\(\chi_{2268}(727,\cdot)\)
\(\chi_{2268}(895,\cdot)\)
\(\chi_{2268}(979,\cdot)\)
\(\chi_{2268}(1147,\cdot)\)
\(\chi_{2268}(1231,\cdot)\)
\(\chi_{2268}(1399,\cdot)\)
\(\chi_{2268}(1483,\cdot)\)
\(\chi_{2268}(1651,\cdot)\)
\(\chi_{2268}(1735,\cdot)\)
\(\chi_{2268}(1903,\cdot)\)
\(\chi_{2268}(1987,\cdot)\)
\(\chi_{2268}(2155,\cdot)\)
\(\chi_{2268}(2239,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1135,1541,325)\) → \((-1,e\left(\frac{8}{27}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2268 }(979, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage:chi.jacobi_sum(n)