sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2268, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([0,10,27]))
pari:[g,chi] = znchar(Mod(1105,2268))
\(\chi_{2268}(13,\cdot)\)
\(\chi_{2268}(97,\cdot)\)
\(\chi_{2268}(265,\cdot)\)
\(\chi_{2268}(349,\cdot)\)
\(\chi_{2268}(517,\cdot)\)
\(\chi_{2268}(601,\cdot)\)
\(\chi_{2268}(769,\cdot)\)
\(\chi_{2268}(853,\cdot)\)
\(\chi_{2268}(1021,\cdot)\)
\(\chi_{2268}(1105,\cdot)\)
\(\chi_{2268}(1273,\cdot)\)
\(\chi_{2268}(1357,\cdot)\)
\(\chi_{2268}(1525,\cdot)\)
\(\chi_{2268}(1609,\cdot)\)
\(\chi_{2268}(1777,\cdot)\)
\(\chi_{2268}(1861,\cdot)\)
\(\chi_{2268}(2029,\cdot)\)
\(\chi_{2268}(2113,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1135,1541,325)\) → \((1,e\left(\frac{5}{27}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2268 }(1105, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{11}{27}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage:chi.jacobi_sum(n)