Properties

Label 2176.dx
Modulus $2176$
Conductor $2176$
Order $32$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2176, base_ring=CyclotomicField(32))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,17,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(197,2176))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2176\)
Conductor: \(2176\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(32\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{32})\)
Fixed field: 32.0.25715608963171577374491887407074174716101871212633187468555272368548966867875022050395372388352.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(19\) \(21\) \(23\)
\(\chi_{2176}(197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(i\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(i\)
\(\chi_{2176}(685,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(-i\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(-i\)
\(\chi_{2176}(725,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(i\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(i\)
\(\chi_{2176}(845,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(-i\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(-i\)
\(\chi_{2176}(989,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(-i\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(-i\)
\(\chi_{2176}(1061,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(i\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(i\)
\(\chi_{2176}(1077,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(i\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(i\)
\(\chi_{2176}(1085,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(-i\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(-i\)
\(\chi_{2176}(1285,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(i\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(i\)
\(\chi_{2176}(1773,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(-i\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(-i\)
\(\chi_{2176}(1813,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(i\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(i\)
\(\chi_{2176}(1933,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(-i\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(-i\)
\(\chi_{2176}(2077,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(-i\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(-i\)
\(\chi_{2176}(2149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(i\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(i\)
\(\chi_{2176}(2165,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(i\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(i\)
\(\chi_{2176}(2173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(-i\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(-i\)