from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2176, base_ring=CyclotomicField(32))
M = H._module
chi = DirichletCharacter(H, M([0,17,6]))
chi.galois_orbit()
[g,chi] = znchar(Mod(197,2176))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2176\) | |
Conductor: | \(2176\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(32\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{32})\) |
Fixed field: | 32.0.25715608963171577374491887407074174716101871212633187468555272368548966867875022050395372388352.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2176}(197,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(i\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(i\) |
\(\chi_{2176}(685,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(-i\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(-i\) |
\(\chi_{2176}(725,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(i\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(i\) |
\(\chi_{2176}(845,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(-i\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(-i\) |
\(\chi_{2176}(989,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(-i\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(-i\) |
\(\chi_{2176}(1061,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(i\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(i\) |
\(\chi_{2176}(1077,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(i\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(i\) |
\(\chi_{2176}(1085,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(-i\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(-i\) |
\(\chi_{2176}(1285,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(i\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(i\) |
\(\chi_{2176}(1773,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(-i\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(-i\) |
\(\chi_{2176}(1813,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(i\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(i\) |
\(\chi_{2176}(1933,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(-i\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{27}{32}\right)\) | \(-i\) |
\(\chi_{2176}(2077,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(-i\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(-i\) |
\(\chi_{2176}(2149,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(i\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(i\) |
\(\chi_{2176}(2165,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(i\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(i\) |
\(\chi_{2176}(2173,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{27}{32}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(-i\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(-i\) |