sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,4,0]))
pari:[g,chi] = znchar(Mod(91,2160))
\(\chi_{2160}(91,\cdot)\)
\(\chi_{2160}(451,\cdot)\)
\(\chi_{2160}(1171,\cdot)\)
\(\chi_{2160}(1531,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((271,1621,2081,1297)\) → \((-1,i,e\left(\frac{1}{3}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2160 }(91, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)