Properties

Label 2032.cn
Modulus $2032$
Conductor $1016$
Order $126$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,63,115])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,2032)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2032\)
Conductor: \(1016\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1016.bt
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{2032}(7,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{126}\right)\)
\(\chi_{2032}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{113}{126}\right)\)
\(\chi_{2032}(39,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{121}{126}\right)\)
\(\chi_{2032}(55,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{126}\right)\)
\(\chi_{2032}(183,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{126}\right)\)
\(\chi_{2032}(311,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{95}{126}\right)\)
\(\chi_{2032}(439,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{103}{126}\right)\)
\(\chi_{2032}(487,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{126}\right)\)
\(\chi_{2032}(551,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{109}{126}\right)\)
\(\chi_{2032}(599,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{115}{126}\right)\)
\(\chi_{2032}(647,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{125}{126}\right)\)
\(\chi_{2032}(727,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{59}{126}\right)\)
\(\chi_{2032}(791,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{67}{126}\right)\)
\(\chi_{2032}(807,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{55}{126}\right)\)
\(\chi_{2032}(855,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{97}{126}\right)\)
\(\chi_{2032}(871,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{79}{126}\right)\)
\(\chi_{2032}(903,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{83}{126}\right)\)
\(\chi_{2032}(935,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{126}\right)\)
\(\chi_{2032}(967,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{126}\right)\)
\(\chi_{2032}(999,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{61}{126}\right)\)
\(\chi_{2032}(1191,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{71}{126}\right)\)
\(\chi_{2032}(1239,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{107}{126}\right)\)
\(\chi_{2032}(1255,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{65}{126}\right)\)
\(\chi_{2032}(1335,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{126}\right)\)
\(\chi_{2032}(1367,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{101}{126}\right)\)
\(\chi_{2032}(1511,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{126}\right)\)
\(\chi_{2032}(1527,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{53}{126}\right)\)
\(\chi_{2032}(1591,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{126}\right)\)
\(\chi_{2032}(1607,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{85}{126}\right)\)
\(\chi_{2032}(1767,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{126}\right)\)
\(\chi_{2032}(1831,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{126}\right)\)