Properties

Label 2032.1335
Modulus $2032$
Conductor $1016$
Order $126$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,63,55]))
 
Copy content pari:[g,chi] = znchar(Mod(1335,2032))
 

Basic properties

Modulus: \(2032\)
Conductor: \(1016\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1016}(827,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2032.cn

\(\chi_{2032}(7,\cdot)\) \(\chi_{2032}(23,\cdot)\) \(\chi_{2032}(39,\cdot)\) \(\chi_{2032}(55,\cdot)\) \(\chi_{2032}(183,\cdot)\) \(\chi_{2032}(311,\cdot)\) \(\chi_{2032}(439,\cdot)\) \(\chi_{2032}(487,\cdot)\) \(\chi_{2032}(551,\cdot)\) \(\chi_{2032}(599,\cdot)\) \(\chi_{2032}(647,\cdot)\) \(\chi_{2032}(727,\cdot)\) \(\chi_{2032}(791,\cdot)\) \(\chi_{2032}(807,\cdot)\) \(\chi_{2032}(855,\cdot)\) \(\chi_{2032}(871,\cdot)\) \(\chi_{2032}(903,\cdot)\) \(\chi_{2032}(935,\cdot)\) \(\chi_{2032}(967,\cdot)\) \(\chi_{2032}(999,\cdot)\) \(\chi_{2032}(1191,\cdot)\) \(\chi_{2032}(1239,\cdot)\) \(\chi_{2032}(1255,\cdot)\) \(\chi_{2032}(1335,\cdot)\) \(\chi_{2032}(1367,\cdot)\) \(\chi_{2032}(1511,\cdot)\) \(\chi_{2032}(1527,\cdot)\) \(\chi_{2032}(1591,\cdot)\) \(\chi_{2032}(1607,\cdot)\) \(\chi_{2032}(1767,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((255,1525,257)\) → \((-1,-1,e\left(\frac{55}{126}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2032 }(1335, a) \) \(1\)\(1\)\(e\left(\frac{55}{126}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{44}{63}\right)\)\(e\left(\frac{55}{63}\right)\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{67}{126}\right)\)\(e\left(\frac{115}{126}\right)\)\(e\left(\frac{37}{63}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{17}{126}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2032 }(1335,a) \;\) at \(\;a = \) e.g. 2