sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,27,22]))
pari:[g,chi] = znchar(Mod(867,2032))
| Modulus: | \(2032\) | |
| Conductor: | \(2032\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2032}(59,\cdot)\)
\(\chi_{2032}(75,\cdot)\)
\(\chi_{2032}(155,\cdot)\)
\(\chi_{2032}(659,\cdot)\)
\(\chi_{2032}(867,\cdot)\)
\(\chi_{2032}(979,\cdot)\)
\(\chi_{2032}(1075,\cdot)\)
\(\chi_{2032}(1091,\cdot)\)
\(\chi_{2032}(1171,\cdot)\)
\(\chi_{2032}(1675,\cdot)\)
\(\chi_{2032}(1883,\cdot)\)
\(\chi_{2032}(1995,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((255,1525,257)\) → \((-1,-i,e\left(\frac{11}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 2032 }(867, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) |
sage:chi.jacobi_sum(n)