Properties

Label 2028.1457
Modulus $2028$
Conductor $507$
Order $26$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,13,14]))
 
Copy content pari:[g,chi] = znchar(Mod(1457,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(507\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{507}(443,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2028.bd

\(\chi_{2028}(53,\cdot)\) \(\chi_{2028}(209,\cdot)\) \(\chi_{2028}(365,\cdot)\) \(\chi_{2028}(521,\cdot)\) \(\chi_{2028}(833,\cdot)\) \(\chi_{2028}(989,\cdot)\) \(\chi_{2028}(1145,\cdot)\) \(\chi_{2028}(1301,\cdot)\) \(\chi_{2028}(1457,\cdot)\) \(\chi_{2028}(1613,\cdot)\) \(\chi_{2028}(1769,\cdot)\) \(\chi_{2028}(1925,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.0.469739652406953148168948870108145354763666849944084892337683.1

Values on generators

\((1015,677,1861)\) → \((1,-1,e\left(\frac{7}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(1457, a) \) \(-1\)\(1\)\(e\left(\frac{9}{26}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{3}{26}\right)\)\(1\)\(-1\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{25}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(1457,a) \;\) at \(\;a = \) e.g. 2