sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(20155, base_ring=CyclotomicField(1932))
M = H._module
chi = DirichletCharacter(H, M([483,1587,1568]))
pari:[g,chi] = znchar(Mod(822,20155))
| Modulus: | \(20155\) | |
| Conductor: | \(20155\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1932\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{20155}(37,\cdot)\)
\(\chi_{20155}(47,\cdot)\)
\(\chi_{20155}(118,\cdot)\)
\(\chi_{20155}(148,\cdot)\)
\(\chi_{20155}(188,\cdot)\)
\(\chi_{20155}(193,\cdot)\)
\(\chi_{20155}(263,\cdot)\)
\(\chi_{20155}(287,\cdot)\)
\(\chi_{20155}(327,\cdot)\)
\(\chi_{20155}(398,\cdot)\)
\(\chi_{20155}(483,\cdot)\)
\(\chi_{20155}(537,\cdot)\)
\(\chi_{20155}(553,\cdot)\)
\(\chi_{20155}(607,\cdot)\)
\(\chi_{20155}(623,\cdot)\)
\(\chi_{20155}(627,\cdot)\)
\(\chi_{20155}(677,\cdot)\)
\(\chi_{20155}(678,\cdot)\)
\(\chi_{20155}(762,\cdot)\)
\(\chi_{20155}(773,\cdot)\)
\(\chi_{20155}(822,\cdot)\)
\(\chi_{20155}(843,\cdot)\)
\(\chi_{20155}(917,\cdot)\)
\(\chi_{20155}(978,\cdot)\)
\(\chi_{20155}(1042,\cdot)\)
\(\chi_{20155}(1062,\cdot)\)
\(\chi_{20155}(1117,\cdot)\)
\(\chi_{20155}(1123,\cdot)\)
\(\chi_{20155}(1163,\cdot)\)
\(\chi_{20155}(1258,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4032,19461,16821)\) → \((i,e\left(\frac{23}{28}\right),e\left(\frac{56}{69}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 20155 }(822, a) \) |
\(1\) | \(1\) | \(e\left(\frac{853}{966}\right)\) | \(e\left(\frac{64}{483}\right)\) | \(e\left(\frac{370}{483}\right)\) | \(e\left(\frac{5}{322}\right)\) | \(e\left(\frac{1327}{1932}\right)\) | \(e\left(\frac{209}{322}\right)\) | \(e\left(\frac{128}{483}\right)\) | \(e\left(\frac{419}{1932}\right)\) | \(e\left(\frac{62}{69}\right)\) | \(e\left(\frac{923}{1932}\right)\) |
sage:chi.jacobi_sum(n)