Properties

Label 20155.148
Modulus $20155$
Conductor $20155$
Order $1932$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(20155, base_ring=CyclotomicField(1932)) M = H._module chi = DirichletCharacter(H, M([1449,345,1148]))
 
Copy content pari:[g,chi] = znchar(Mod(148,20155))
 

Basic properties

Modulus: \(20155\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1932\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 20155.gc

\(\chi_{20155}(37,\cdot)\) \(\chi_{20155}(47,\cdot)\) \(\chi_{20155}(118,\cdot)\) \(\chi_{20155}(148,\cdot)\) \(\chi_{20155}(188,\cdot)\) \(\chi_{20155}(193,\cdot)\) \(\chi_{20155}(263,\cdot)\) \(\chi_{20155}(287,\cdot)\) \(\chi_{20155}(327,\cdot)\) \(\chi_{20155}(398,\cdot)\) \(\chi_{20155}(483,\cdot)\) \(\chi_{20155}(537,\cdot)\) \(\chi_{20155}(553,\cdot)\) \(\chi_{20155}(607,\cdot)\) \(\chi_{20155}(623,\cdot)\) \(\chi_{20155}(627,\cdot)\) \(\chi_{20155}(677,\cdot)\) \(\chi_{20155}(678,\cdot)\) \(\chi_{20155}(762,\cdot)\) \(\chi_{20155}(773,\cdot)\) \(\chi_{20155}(822,\cdot)\) \(\chi_{20155}(843,\cdot)\) \(\chi_{20155}(917,\cdot)\) \(\chi_{20155}(978,\cdot)\) \(\chi_{20155}(1042,\cdot)\) \(\chi_{20155}(1062,\cdot)\) \(\chi_{20155}(1117,\cdot)\) \(\chi_{20155}(1123,\cdot)\) \(\chi_{20155}(1163,\cdot)\) \(\chi_{20155}(1258,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1932})$
Fixed field: Number field defined by a degree 1932 polynomial (not computed)

Values on generators

\((4032,19461,16821)\) → \((-i,e\left(\frac{5}{28}\right),e\left(\frac{41}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 20155 }(148, a) \) \(1\)\(1\)\(e\left(\frac{505}{966}\right)\)\(e\left(\frac{244}{483}\right)\)\(e\left(\frac{22}{483}\right)\)\(e\left(\frac{9}{322}\right)\)\(e\left(\frac{1165}{1932}\right)\)\(e\left(\frac{183}{322}\right)\)\(e\left(\frac{5}{483}\right)\)\(e\left(\frac{1205}{1932}\right)\)\(e\left(\frac{38}{69}\right)\)\(e\left(\frac{953}{1932}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 20155 }(148,a) \;\) at \(\;a = \) e.g. 2