sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2000, base_ring=CyclotomicField(100))
M = H._module
chi = DirichletCharacter(H, M([50,75,76]))
pari:[g,chi] = znchar(Mod(1011,2000))
| Modulus: | \(2000\) | |
| Conductor: | \(2000\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(100\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2000}(11,\cdot)\)
\(\chi_{2000}(91,\cdot)\)
\(\chi_{2000}(131,\cdot)\)
\(\chi_{2000}(171,\cdot)\)
\(\chi_{2000}(211,\cdot)\)
\(\chi_{2000}(291,\cdot)\)
\(\chi_{2000}(331,\cdot)\)
\(\chi_{2000}(371,\cdot)\)
\(\chi_{2000}(411,\cdot)\)
\(\chi_{2000}(491,\cdot)\)
\(\chi_{2000}(531,\cdot)\)
\(\chi_{2000}(571,\cdot)\)
\(\chi_{2000}(611,\cdot)\)
\(\chi_{2000}(691,\cdot)\)
\(\chi_{2000}(731,\cdot)\)
\(\chi_{2000}(771,\cdot)\)
\(\chi_{2000}(811,\cdot)\)
\(\chi_{2000}(891,\cdot)\)
\(\chi_{2000}(931,\cdot)\)
\(\chi_{2000}(971,\cdot)\)
\(\chi_{2000}(1011,\cdot)\)
\(\chi_{2000}(1091,\cdot)\)
\(\chi_{2000}(1131,\cdot)\)
\(\chi_{2000}(1171,\cdot)\)
\(\chi_{2000}(1211,\cdot)\)
\(\chi_{2000}(1291,\cdot)\)
\(\chi_{2000}(1331,\cdot)\)
\(\chi_{2000}(1371,\cdot)\)
\(\chi_{2000}(1411,\cdot)\)
\(\chi_{2000}(1491,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((751,501,1377)\) → \((-1,-i,e\left(\frac{19}{25}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2000 }(1011, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{100}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{50}\right)\) | \(e\left(\frac{1}{100}\right)\) | \(e\left(\frac{89}{100}\right)\) | \(e\left(\frac{12}{25}\right)\) | \(e\left(\frac{43}{100}\right)\) | \(e\left(\frac{67}{100}\right)\) | \(e\left(\frac{14}{25}\right)\) | \(e\left(\frac{21}{100}\right)\) |
sage:chi.jacobi_sum(n)