| L(s) = 1 | + (0.904 + 0.425i)3-s + (−0.809 − 0.587i)7-s + (0.637 + 0.770i)9-s + (0.998 + 0.0627i)11-s + (0.770 − 0.637i)13-s + (−0.992 + 0.125i)17-s + (−0.904 + 0.425i)19-s + (−0.481 − 0.876i)21-s + (−0.929 − 0.368i)23-s + (0.248 + 0.968i)27-s + (−0.684 + 0.728i)29-s + (0.992 − 0.125i)31-s + (0.876 + 0.481i)33-s + (0.248 − 0.968i)37-s + (0.968 − 0.248i)39-s + ⋯ |
| L(s) = 1 | + (0.904 + 0.425i)3-s + (−0.809 − 0.587i)7-s + (0.637 + 0.770i)9-s + (0.998 + 0.0627i)11-s + (0.770 − 0.637i)13-s + (−0.992 + 0.125i)17-s + (−0.904 + 0.425i)19-s + (−0.481 − 0.876i)21-s + (−0.929 − 0.368i)23-s + (0.248 + 0.968i)27-s + (−0.684 + 0.728i)29-s + (0.992 − 0.125i)31-s + (0.876 + 0.481i)33-s + (0.248 − 0.968i)37-s + (0.968 − 0.248i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4491525815 - 0.9060028204i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4491525815 - 0.9060028204i\) |
| \(L(1)\) |
\(\approx\) |
\(1.204364876 + 0.02564148145i\) |
| \(L(1)\) |
\(\approx\) |
\(1.204364876 + 0.02564148145i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (0.904 + 0.425i)T \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.998 + 0.0627i)T \) |
| 13 | \( 1 + (0.770 - 0.637i)T \) |
| 17 | \( 1 + (-0.992 + 0.125i)T \) |
| 19 | \( 1 + (-0.904 + 0.425i)T \) |
| 23 | \( 1 + (-0.929 - 0.368i)T \) |
| 29 | \( 1 + (-0.684 + 0.728i)T \) |
| 31 | \( 1 + (0.992 - 0.125i)T \) |
| 37 | \( 1 + (0.248 - 0.968i)T \) |
| 41 | \( 1 + (0.929 - 0.368i)T \) |
| 43 | \( 1 + (-0.951 + 0.309i)T \) |
| 47 | \( 1 + (0.187 + 0.982i)T \) |
| 53 | \( 1 + (-0.481 - 0.876i)T \) |
| 59 | \( 1 + (0.844 + 0.535i)T \) |
| 61 | \( 1 + (0.368 - 0.929i)T \) |
| 67 | \( 1 + (-0.684 - 0.728i)T \) |
| 71 | \( 1 + (-0.187 - 0.982i)T \) |
| 73 | \( 1 + (-0.535 - 0.844i)T \) |
| 79 | \( 1 + (0.425 - 0.904i)T \) |
| 83 | \( 1 + (-0.904 + 0.425i)T \) |
| 89 | \( 1 + (-0.535 - 0.844i)T \) |
| 97 | \( 1 + (0.728 + 0.684i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.89830541878158951562545984745, −19.27407853386080409103588883555, −18.80872499194872088767741374777, −18.00354505415149067315757446971, −17.18690099060685506208182514600, −16.25169229374850300576981907082, −15.496443109659048110555765984730, −14.995335557770114981605147649805, −14.03662577261145860066489747553, −13.42652327048715251384215949589, −12.884693896546302254983358361313, −11.8851106878936165871236348486, −11.41594282516629569008305253015, −10.081754713158293341826199206016, −9.43726764921496541230293681493, −8.728576868389928616679273827146, −8.30446698463875718741152514641, −6.9961764823712723618853743843, −6.53310247134225698498616265192, −5.878949825835136356308712307444, −4.28845993145904609966448853339, −3.88371618402736893503782593796, −2.79669822787539867163762311667, −2.10305848158949484563890177956, −1.164822788840282993595563991329,
0.145575774762309695717525755643, 1.414674752836712890163384493104, 2.3489308036447295271804165164, 3.39342955579702817741386370214, 3.94829729404819092092259138074, 4.586732783691612686856428631682, 6.017902434909688929934538989184, 6.57669390511418574971731085964, 7.54553089647827281614919504491, 8.37372693379580559589875309689, 9.04418657733907060792208837722, 9.74085522940327821580959381892, 10.53258741523955055893709241861, 11.08571281880268448169766029407, 12.36685765494440730220286758395, 13.04410042905562781066563182446, 13.649158889215778843696485355485, 14.43383524245954214190608599675, 15.04478783302223568008828183791, 15.969555617622946954955630274251, 16.34348874454623261409287467753, 17.28664438328262678316563567616, 18.0830242759280331662032837620, 19.11636320754175845399868686344, 19.5671902559146566832711290635