Properties

Label 1984.1887
Modulus $1984$
Conductor $248$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1887,1984))
 

Basic properties

Modulus: \(1984\)
Conductor: \(248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{248}(27,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1984.bd

\(\chi_{1984}(1503,\cdot)\) \(\chi_{1984}(1759,\cdot)\) \(\chi_{1984}(1887,\cdot)\) \(\chi_{1984}(1951,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.866373538960867328.1

Values on generators

\((63,1861,65)\) → \((-1,-1,e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1984 }(1887, a) \) \(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1984 }(1887,a) \;\) at \(\;a = \) e.g. 2