Properties

Label 248.27
Modulus $248$
Conductor $248$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(248, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,1]))
 
Copy content pari:[g,chi] = znchar(Mod(27,248))
 

Basic properties

Modulus: \(248\)
Conductor: \(248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 248.v

\(\chi_{248}(27,\cdot)\) \(\chi_{248}(91,\cdot)\) \(\chi_{248}(139,\cdot)\) \(\chi_{248}(147,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.866373538960867328.1

Values on generators

\((63,125,65)\) → \((-1,-1,e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 248 }(27, a) \) \(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 248 }(27,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 248 }(27,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 248 }(27,·),\chi_{ 248 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 248 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2