Properties

Label 1960.1699
Modulus $1960$
Conductor $1960$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1960, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([21,21,21,41]))
 
Copy content pari:[g,chi] = znchar(Mod(1699,1960))
 

Basic properties

Modulus: \(1960\)
Conductor: \(1960\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1960.dj

\(\chi_{1960}(59,\cdot)\) \(\chi_{1960}(299,\cdot)\) \(\chi_{1960}(339,\cdot)\) \(\chi_{1960}(579,\cdot)\) \(\chi_{1960}(859,\cdot)\) \(\chi_{1960}(899,\cdot)\) \(\chi_{1960}(1139,\cdot)\) \(\chi_{1960}(1179,\cdot)\) \(\chi_{1960}(1419,\cdot)\) \(\chi_{1960}(1459,\cdot)\) \(\chi_{1960}(1699,\cdot)\) \(\chi_{1960}(1739,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1471,981,1177,1081)\) → \((-1,-1,-1,e\left(\frac{41}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1960 }(1699, a) \) \(1\)\(1\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1960 }(1699,a) \;\) at \(\;a = \) e.g. 2