from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(196, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,10]))
chi.galois_orbit()
[g,chi] = znchar(Mod(15,196))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(196\) | |
Conductor: | \(196\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.0.3138866894939200133545984.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{196}(15,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) |
\(\chi_{196}(43,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{196}(71,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{196}(127,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{196}(155,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{196}(183,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) |