Properties

Modulus $196$
Structure \(C_{2}\times C_{42}\)
Order $84$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(196)
 
pari: g = idealstar(,196,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 84
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{42}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{196}(99,\cdot)$, $\chi_{196}(101,\cdot)$

First 32 of 84 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{196}(1,\cdot)\) 196.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{196}(3,\cdot)\) 196.p 42 yes \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{196}(5,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{196}(9,\cdot)\) 196.m 21 no \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{196}(11,\cdot)\) 196.o 42 yes \(-1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{196}(13,\cdot)\) 196.l 14 no \(-1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(-1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{196}(15,\cdot)\) 196.k 14 yes \(-1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{196}(17,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{196}(19,\cdot)\) 196.f 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{196}(23,\cdot)\) 196.o 42 yes \(-1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{196}(25,\cdot)\) 196.m 21 no \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{196}(27,\cdot)\) 196.j 14 yes \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{196}(29,\cdot)\) 196.i 7 no \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{196}(31,\cdot)\) 196.f 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{196}(33,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{196}(37,\cdot)\) 196.m 21 no \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{196}(39,\cdot)\) 196.o 42 yes \(-1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{196}(41,\cdot)\) 196.l 14 no \(-1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(-1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{196}(43,\cdot)\) 196.k 14 yes \(-1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{196}(45,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{196}(47,\cdot)\) 196.p 42 yes \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{196}(51,\cdot)\) 196.o 42 yes \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{196}(53,\cdot)\) 196.m 21 no \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{196}(55,\cdot)\) 196.j 14 yes \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{196}(57,\cdot)\) 196.i 7 no \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{196}(59,\cdot)\) 196.p 42 yes \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{196}(61,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{196}(65,\cdot)\) 196.m 21 no \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{196}(67,\cdot)\) 196.g 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{196}(69,\cdot)\) 196.l 14 no \(-1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(-1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{196}(71,\cdot)\) 196.k 14 yes \(-1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{196}(73,\cdot)\) 196.n 42 no \(-1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\)
Click here to search among the remaining 52 characters.