sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19404, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,35,17,21]))
pari:[g,chi] = znchar(Mod(13991,19404))
| Modulus: | \(19404\) | |
| Conductor: | \(19404\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{19404}(131,\cdot)\)
\(\chi_{19404}(2243,\cdot)\)
\(\chi_{19404}(2903,\cdot)\)
\(\chi_{19404}(5015,\cdot)\)
\(\chi_{19404}(5675,\cdot)\)
\(\chi_{19404}(7787,\cdot)\)
\(\chi_{19404}(10559,\cdot)\)
\(\chi_{19404}(11219,\cdot)\)
\(\chi_{19404}(13331,\cdot)\)
\(\chi_{19404}(13991,\cdot)\)
\(\chi_{19404}(16763,\cdot)\)
\(\chi_{19404}(18875,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((9703,4313,9901,5293)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{17}{42}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 19404 }(13991, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) |
sage:chi.jacobi_sum(n)