sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1824, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,63,36,52]))
pari:[g,chi] = znchar(Mod(269,1824))
| Modulus: | \(1824\) | |
| Conductor: | \(1824\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1824}(29,\cdot)\)
\(\chi_{1824}(53,\cdot)\)
\(\chi_{1824}(173,\cdot)\)
\(\chi_{1824}(269,\cdot)\)
\(\chi_{1824}(317,\cdot)\)
\(\chi_{1824}(413,\cdot)\)
\(\chi_{1824}(485,\cdot)\)
\(\chi_{1824}(509,\cdot)\)
\(\chi_{1824}(629,\cdot)\)
\(\chi_{1824}(725,\cdot)\)
\(\chi_{1824}(773,\cdot)\)
\(\chi_{1824}(869,\cdot)\)
\(\chi_{1824}(941,\cdot)\)
\(\chi_{1824}(965,\cdot)\)
\(\chi_{1824}(1085,\cdot)\)
\(\chi_{1824}(1181,\cdot)\)
\(\chi_{1824}(1229,\cdot)\)
\(\chi_{1824}(1325,\cdot)\)
\(\chi_{1824}(1397,\cdot)\)
\(\chi_{1824}(1421,\cdot)\)
\(\chi_{1824}(1541,\cdot)\)
\(\chi_{1824}(1637,\cdot)\)
\(\chi_{1824}(1685,\cdot)\)
\(\chi_{1824}(1781,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((799,229,1217,97)\) → \((1,e\left(\frac{7}{8}\right),-1,e\left(\frac{13}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 1824 }(269, a) \) |
\(1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{72}\right)\) |
sage:chi.jacobi_sum(n)