Properties

Label 1824.269
Modulus $1824$
Conductor $1824$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(72)) M = H._module chi = DirichletCharacter(H, M([0,63,36,52]))
 
Copy content pari:[g,chi] = znchar(Mod(269,1824))
 

Basic properties

Modulus: \(1824\)
Conductor: \(1824\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(72\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1824.do

\(\chi_{1824}(29,\cdot)\) \(\chi_{1824}(53,\cdot)\) \(\chi_{1824}(173,\cdot)\) \(\chi_{1824}(269,\cdot)\) \(\chi_{1824}(317,\cdot)\) \(\chi_{1824}(413,\cdot)\) \(\chi_{1824}(485,\cdot)\) \(\chi_{1824}(509,\cdot)\) \(\chi_{1824}(629,\cdot)\) \(\chi_{1824}(725,\cdot)\) \(\chi_{1824}(773,\cdot)\) \(\chi_{1824}(869,\cdot)\) \(\chi_{1824}(941,\cdot)\) \(\chi_{1824}(965,\cdot)\) \(\chi_{1824}(1085,\cdot)\) \(\chi_{1824}(1181,\cdot)\) \(\chi_{1824}(1229,\cdot)\) \(\chi_{1824}(1325,\cdot)\) \(\chi_{1824}(1397,\cdot)\) \(\chi_{1824}(1421,\cdot)\) \(\chi_{1824}(1541,\cdot)\) \(\chi_{1824}(1637,\cdot)\) \(\chi_{1824}(1685,\cdot)\) \(\chi_{1824}(1781,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((799,229,1217,97)\) → \((1,e\left(\frac{7}{8}\right),-1,e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1824 }(269, a) \) \(1\)\(1\)\(e\left(\frac{67}{72}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{53}{72}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{29}{72}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{72}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1824 }(269,a) \;\) at \(\;a = \) e.g. 2