sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18225, base_ring=CyclotomicField(2430))
M = H._module
chi = DirichletCharacter(H, M([10,243]))
pari:[g,chi] = znchar(Mod(4,18225))
| Modulus: | \(18225\) | |
| Conductor: | \(18225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2430\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{18225}(4,\cdot)\)
\(\chi_{18225}(34,\cdot)\)
\(\chi_{18225}(79,\cdot)\)
\(\chi_{18225}(94,\cdot)\)
\(\chi_{18225}(139,\cdot)\)
\(\chi_{18225}(169,\cdot)\)
\(\chi_{18225}(184,\cdot)\)
\(\chi_{18225}(214,\cdot)\)
\(\chi_{18225}(229,\cdot)\)
\(\chi_{18225}(259,\cdot)\)
\(\chi_{18225}(304,\cdot)\)
\(\chi_{18225}(319,\cdot)\)
\(\chi_{18225}(364,\cdot)\)
\(\chi_{18225}(394,\cdot)\)
\(\chi_{18225}(409,\cdot)\)
\(\chi_{18225}(439,\cdot)\)
\(\chi_{18225}(454,\cdot)\)
\(\chi_{18225}(484,\cdot)\)
\(\chi_{18225}(529,\cdot)\)
\(\chi_{18225}(544,\cdot)\)
\(\chi_{18225}(589,\cdot)\)
\(\chi_{18225}(619,\cdot)\)
\(\chi_{18225}(634,\cdot)\)
\(\chi_{18225}(664,\cdot)\)
\(\chi_{18225}(679,\cdot)\)
\(\chi_{18225}(709,\cdot)\)
\(\chi_{18225}(754,\cdot)\)
\(\chi_{18225}(769,\cdot)\)
\(\chi_{18225}(814,\cdot)\)
\(\chi_{18225}(844,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,13852)\) → \((e\left(\frac{1}{243}\right),e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 18225 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{253}{2430}\right)\) | \(e\left(\frac{253}{1215}\right)\) | \(e\left(\frac{59}{486}\right)\) | \(e\left(\frac{253}{810}\right)\) | \(e\left(\frac{929}{1215}\right)\) | \(e\left(\frac{647}{2430}\right)\) | \(e\left(\frac{274}{1215}\right)\) | \(e\left(\frac{506}{1215}\right)\) | \(e\left(\frac{353}{810}\right)\) | \(e\left(\frac{44}{405}\right)\) |
sage:chi.jacobi_sum(n)