Properties

Label 18225.484
Modulus $18225$
Conductor $18225$
Order $2430$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(2430)) M = H._module chi = DirichletCharacter(H, M([410,1701]))
 
Copy content pari:[g,chi] = znchar(Mod(484,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(18225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2430\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cp

\(\chi_{18225}(4,\cdot)\) \(\chi_{18225}(34,\cdot)\) \(\chi_{18225}(79,\cdot)\) \(\chi_{18225}(94,\cdot)\) \(\chi_{18225}(139,\cdot)\) \(\chi_{18225}(169,\cdot)\) \(\chi_{18225}(184,\cdot)\) \(\chi_{18225}(214,\cdot)\) \(\chi_{18225}(229,\cdot)\) \(\chi_{18225}(259,\cdot)\) \(\chi_{18225}(304,\cdot)\) \(\chi_{18225}(319,\cdot)\) \(\chi_{18225}(364,\cdot)\) \(\chi_{18225}(394,\cdot)\) \(\chi_{18225}(409,\cdot)\) \(\chi_{18225}(439,\cdot)\) \(\chi_{18225}(454,\cdot)\) \(\chi_{18225}(484,\cdot)\) \(\chi_{18225}(529,\cdot)\) \(\chi_{18225}(544,\cdot)\) \(\chi_{18225}(589,\cdot)\) \(\chi_{18225}(619,\cdot)\) \(\chi_{18225}(634,\cdot)\) \(\chi_{18225}(664,\cdot)\) \(\chi_{18225}(679,\cdot)\) \(\chi_{18225}(709,\cdot)\) \(\chi_{18225}(754,\cdot)\) \(\chi_{18225}(769,\cdot)\) \(\chi_{18225}(814,\cdot)\) \(\chi_{18225}(844,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1215})$
Fixed field: Number field defined by a degree 2430 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{41}{243}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(484, a) \) \(1\)\(1\)\(e\left(\frac{2111}{2430}\right)\)\(e\left(\frac{896}{1215}\right)\)\(e\left(\frac{475}{486}\right)\)\(e\left(\frac{491}{810}\right)\)\(e\left(\frac{1153}{1215}\right)\)\(e\left(\frac{769}{2430}\right)\)\(e\left(\frac{1028}{1215}\right)\)\(e\left(\frac{577}{1215}\right)\)\(e\left(\frac{541}{810}\right)\)\(e\left(\frac{103}{405}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(484,a) \;\) at \(\;a = \) e.g. 2