Properties

Label 18225.cg
Modulus $18225$
Conductor $2025$
Order $540$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(540)) M = H._module chi = DirichletCharacter(H, M([470,189])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(53,18225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(18225\)
Conductor: \(2025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(540\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2025.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{540})$
Fixed field: Number field defined by a degree 540 polynomial (not computed)

First 31 of 144 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{18225}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{540}\right)\) \(e\left(\frac{119}{270}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{119}{180}\right)\) \(e\left(\frac{247}{270}\right)\) \(e\left(\frac{331}{540}\right)\) \(e\left(\frac{121}{135}\right)\) \(e\left(\frac{119}{135}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{7}{90}\right)\)
\(\chi_{18225}(188,\cdot)\) \(1\) \(1\) \(e\left(\frac{403}{540}\right)\) \(e\left(\frac{133}{270}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{43}{180}\right)\) \(e\left(\frac{149}{270}\right)\) \(e\left(\frac{227}{540}\right)\) \(e\left(\frac{32}{135}\right)\) \(e\left(\frac{133}{135}\right)\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{29}{90}\right)\)
\(\chi_{18225}(377,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{540}\right)\) \(e\left(\frac{77}{270}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{77}{180}\right)\) \(e\left(\frac{1}{270}\right)\) \(e\left(\frac{373}{540}\right)\) \(e\left(\frac{118}{135}\right)\) \(e\left(\frac{77}{135}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{31}{90}\right)\)
\(\chi_{18225}(458,\cdot)\) \(1\) \(1\) \(e\left(\frac{431}{540}\right)\) \(e\left(\frac{161}{270}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{223}{270}\right)\) \(e\left(\frac{19}{540}\right)\) \(e\left(\frac{124}{135}\right)\) \(e\left(\frac{26}{135}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{73}{90}\right)\)
\(\chi_{18225}(512,\cdot)\) \(1\) \(1\) \(e\left(\frac{253}{540}\right)\) \(e\left(\frac{253}{270}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{119}{270}\right)\) \(e\left(\frac{377}{540}\right)\) \(e\left(\frac{2}{135}\right)\) \(e\left(\frac{118}{135}\right)\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{89}{90}\right)\)
\(\chi_{18225}(863,\cdot)\) \(1\) \(1\) \(e\left(\frac{203}{540}\right)\) \(e\left(\frac{203}{270}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{199}{270}\right)\) \(e\left(\frac{247}{540}\right)\) \(e\left(\frac{127}{135}\right)\) \(e\left(\frac{68}{135}\right)\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{49}{90}\right)\)
\(\chi_{18225}(917,\cdot)\) \(1\) \(1\) \(e\left(\frac{241}{540}\right)\) \(e\left(\frac{241}{270}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{203}{270}\right)\) \(e\left(\frac{389}{540}\right)\) \(e\left(\frac{59}{135}\right)\) \(e\left(\frac{106}{135}\right)\) \(e\left(\frac{131}{180}\right)\) \(e\left(\frac{83}{90}\right)\)
\(\chi_{18225}(998,\cdot)\) \(1\) \(1\) \(e\left(\frac{487}{540}\right)\) \(e\left(\frac{217}{270}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{101}{270}\right)\) \(e\left(\frac{143}{540}\right)\) \(e\left(\frac{38}{135}\right)\) \(e\left(\frac{82}{135}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{71}{90}\right)\)
\(\chi_{18225}(1187,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{540}\right)\) \(e\left(\frac{53}{270}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{169}{270}\right)\) \(e\left(\frac{397}{540}\right)\) \(e\left(\frac{97}{135}\right)\) \(e\left(\frac{53}{135}\right)\) \(e\left(\frac{43}{180}\right)\) \(e\left(\frac{19}{90}\right)\)
\(\chi_{18225}(1322,\cdot)\) \(1\) \(1\) \(e\left(\frac{229}{540}\right)\) \(e\left(\frac{229}{270}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{17}{270}\right)\) \(e\left(\frac{401}{540}\right)\) \(e\left(\frac{116}{135}\right)\) \(e\left(\frac{94}{135}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{77}{90}\right)\)
\(\chi_{18225}(1403,\cdot)\) \(1\) \(1\) \(e\left(\frac{259}{540}\right)\) \(e\left(\frac{259}{270}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{77}{270}\right)\) \(e\left(\frac{371}{540}\right)\) \(e\left(\frac{41}{135}\right)\) \(e\left(\frac{124}{135}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{18225}(1592,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{540}\right)\) \(e\left(\frac{41}{270}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{253}{270}\right)\) \(e\left(\frac{409}{540}\right)\) \(e\left(\frac{19}{135}\right)\) \(e\left(\frac{41}{135}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{13}{90}\right)\)
\(\chi_{18225}(1673,\cdot)\) \(1\) \(1\) \(e\left(\frac{287}{540}\right)\) \(e\left(\frac{17}{270}\right)\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{151}{270}\right)\) \(e\left(\frac{163}{540}\right)\) \(e\left(\frac{133}{135}\right)\) \(e\left(\frac{17}{135}\right)\) \(e\left(\frac{97}{180}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{18225}(1727,\cdot)\) \(1\) \(1\) \(e\left(\frac{217}{540}\right)\) \(e\left(\frac{217}{270}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{37}{180}\right)\) \(e\left(\frac{101}{270}\right)\) \(e\left(\frac{413}{540}\right)\) \(e\left(\frac{38}{135}\right)\) \(e\left(\frac{82}{135}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{71}{90}\right)\)
\(\chi_{18225}(1808,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{540}\right)\) \(e\left(\frac{31}{270}\right)\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{53}{270}\right)\) \(e\left(\frac{59}{540}\right)\) \(e\left(\frac{44}{135}\right)\) \(e\left(\frac{31}{135}\right)\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{23}{90}\right)\)
\(\chi_{18225}(1997,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{540}\right)\) \(e\left(\frac{29}{270}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{67}{270}\right)\) \(e\left(\frac{421}{540}\right)\) \(e\left(\frac{76}{135}\right)\) \(e\left(\frac{29}{135}\right)\) \(e\left(\frac{139}{180}\right)\) \(e\left(\frac{7}{90}\right)\)
\(\chi_{18225}(2078,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{540}\right)\) \(e\left(\frac{59}{270}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{127}{270}\right)\) \(e\left(\frac{391}{540}\right)\) \(e\left(\frac{1}{135}\right)\) \(e\left(\frac{59}{135}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{67}{90}\right)\)
\(\chi_{18225}(2213,\cdot)\) \(1\) \(1\) \(e\left(\frac{343}{540}\right)\) \(e\left(\frac{73}{270}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{29}{270}\right)\) \(e\left(\frac{287}{540}\right)\) \(e\left(\frac{47}{135}\right)\) \(e\left(\frac{73}{135}\right)\) \(e\left(\frac{173}{180}\right)\) \(e\left(\frac{89}{90}\right)\)
\(\chi_{18225}(2402,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{540}\right)\) \(e\left(\frac{17}{270}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{151}{270}\right)\) \(e\left(\frac{433}{540}\right)\) \(e\left(\frac{133}{135}\right)\) \(e\left(\frac{17}{135}\right)\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{18225}(2483,\cdot)\) \(1\) \(1\) \(e\left(\frac{371}{540}\right)\) \(e\left(\frac{101}{270}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{103}{270}\right)\) \(e\left(\frac{79}{540}\right)\) \(e\left(\frac{4}{135}\right)\) \(e\left(\frac{101}{135}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{43}{90}\right)\)
\(\chi_{18225}(2537,\cdot)\) \(1\) \(1\) \(e\left(\frac{193}{540}\right)\) \(e\left(\frac{193}{270}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{269}{270}\right)\) \(e\left(\frac{437}{540}\right)\) \(e\left(\frac{17}{135}\right)\) \(e\left(\frac{58}{135}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{59}{90}\right)\)
\(\chi_{18225}(2888,\cdot)\) \(1\) \(1\) \(e\left(\frac{143}{540}\right)\) \(e\left(\frac{143}{270}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{79}{270}\right)\) \(e\left(\frac{307}{540}\right)\) \(e\left(\frac{7}{135}\right)\) \(e\left(\frac{8}{135}\right)\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{19}{90}\right)\)
\(\chi_{18225}(2942,\cdot)\) \(1\) \(1\) \(e\left(\frac{181}{540}\right)\) \(e\left(\frac{181}{270}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{83}{270}\right)\) \(e\left(\frac{449}{540}\right)\) \(e\left(\frac{74}{135}\right)\) \(e\left(\frac{46}{135}\right)\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{18225}(3023,\cdot)\) \(1\) \(1\) \(e\left(\frac{427}{540}\right)\) \(e\left(\frac{157}{270}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{251}{270}\right)\) \(e\left(\frac{203}{540}\right)\) \(e\left(\frac{53}{135}\right)\) \(e\left(\frac{22}{135}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{41}{90}\right)\)
\(\chi_{18225}(3212,\cdot)\) \(1\) \(1\) \(e\left(\frac{533}{540}\right)\) \(e\left(\frac{263}{270}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{173}{180}\right)\) \(e\left(\frac{49}{270}\right)\) \(e\left(\frac{457}{540}\right)\) \(e\left(\frac{112}{135}\right)\) \(e\left(\frac{128}{135}\right)\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{79}{90}\right)\)
\(\chi_{18225}(3347,\cdot)\) \(1\) \(1\) \(e\left(\frac{169}{540}\right)\) \(e\left(\frac{169}{270}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{169}{180}\right)\) \(e\left(\frac{167}{270}\right)\) \(e\left(\frac{461}{540}\right)\) \(e\left(\frac{131}{135}\right)\) \(e\left(\frac{34}{135}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{18225}(3428,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{540}\right)\) \(e\left(\frac{199}{270}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{227}{270}\right)\) \(e\left(\frac{431}{540}\right)\) \(e\left(\frac{56}{135}\right)\) \(e\left(\frac{64}{135}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{17}{90}\right)\)
\(\chi_{18225}(3617,\cdot)\) \(1\) \(1\) \(e\left(\frac{521}{540}\right)\) \(e\left(\frac{251}{270}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{133}{270}\right)\) \(e\left(\frac{469}{540}\right)\) \(e\left(\frac{34}{135}\right)\) \(e\left(\frac{116}{135}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{73}{90}\right)\)
\(\chi_{18225}(3698,\cdot)\) \(1\) \(1\) \(e\left(\frac{227}{540}\right)\) \(e\left(\frac{227}{270}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{31}{270}\right)\) \(e\left(\frac{223}{540}\right)\) \(e\left(\frac{13}{135}\right)\) \(e\left(\frac{92}{135}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{61}{90}\right)\)
\(\chi_{18225}(3752,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{540}\right)\) \(e\left(\frac{157}{270}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{251}{270}\right)\) \(e\left(\frac{473}{540}\right)\) \(e\left(\frac{53}{135}\right)\) \(e\left(\frac{22}{135}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{41}{90}\right)\)
\(\chi_{18225}(3833,\cdot)\) \(1\) \(1\) \(e\left(\frac{511}{540}\right)\) \(e\left(\frac{241}{270}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{203}{270}\right)\) \(e\left(\frac{119}{540}\right)\) \(e\left(\frac{59}{135}\right)\) \(e\left(\frac{106}{135}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{83}{90}\right)\)