Properties

Label 18225.998
Modulus $18225$
Conductor $2025$
Order $540$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(540)) M = H._module chi = DirichletCharacter(H, M([190,297]))
 
Copy content pari:[g,chi] = znchar(Mod(998,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(2025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(540\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2025}(623,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cg

\(\chi_{18225}(53,\cdot)\) \(\chi_{18225}(188,\cdot)\) \(\chi_{18225}(377,\cdot)\) \(\chi_{18225}(458,\cdot)\) \(\chi_{18225}(512,\cdot)\) \(\chi_{18225}(863,\cdot)\) \(\chi_{18225}(917,\cdot)\) \(\chi_{18225}(998,\cdot)\) \(\chi_{18225}(1187,\cdot)\) \(\chi_{18225}(1322,\cdot)\) \(\chi_{18225}(1403,\cdot)\) \(\chi_{18225}(1592,\cdot)\) \(\chi_{18225}(1673,\cdot)\) \(\chi_{18225}(1727,\cdot)\) \(\chi_{18225}(1808,\cdot)\) \(\chi_{18225}(1997,\cdot)\) \(\chi_{18225}(2078,\cdot)\) \(\chi_{18225}(2213,\cdot)\) \(\chi_{18225}(2402,\cdot)\) \(\chi_{18225}(2483,\cdot)\) \(\chi_{18225}(2537,\cdot)\) \(\chi_{18225}(2888,\cdot)\) \(\chi_{18225}(2942,\cdot)\) \(\chi_{18225}(3023,\cdot)\) \(\chi_{18225}(3212,\cdot)\) \(\chi_{18225}(3347,\cdot)\) \(\chi_{18225}(3428,\cdot)\) \(\chi_{18225}(3617,\cdot)\) \(\chi_{18225}(3698,\cdot)\) \(\chi_{18225}(3752,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{540})$
Fixed field: Number field defined by a degree 540 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{19}{54}\right),e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(998, a) \) \(1\)\(1\)\(e\left(\frac{487}{540}\right)\)\(e\left(\frac{217}{270}\right)\)\(e\left(\frac{41}{108}\right)\)\(e\left(\frac{127}{180}\right)\)\(e\left(\frac{101}{270}\right)\)\(e\left(\frac{143}{540}\right)\)\(e\left(\frac{38}{135}\right)\)\(e\left(\frac{82}{135}\right)\)\(e\left(\frac{137}{180}\right)\)\(e\left(\frac{71}{90}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(998,a) \;\) at \(\;a = \) e.g. 2