Properties

Label 1815.1649
Modulus $1815$
Conductor $1815$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,11,17]))
 
Copy content pari:[g,chi] = znchar(Mod(1649,1815))
 

Basic properties

Modulus: \(1815\)
Conductor: \(1815\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1815.bd

\(\chi_{1815}(164,\cdot)\) \(\chi_{1815}(329,\cdot)\) \(\chi_{1815}(494,\cdot)\) \(\chi_{1815}(659,\cdot)\) \(\chi_{1815}(824,\cdot)\) \(\chi_{1815}(989,\cdot)\) \(\chi_{1815}(1154,\cdot)\) \(\chi_{1815}(1319,\cdot)\) \(\chi_{1815}(1484,\cdot)\) \(\chi_{1815}(1649,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.43062966214595858730535497699537467025089813545751953125.1

Values on generators

\((1211,727,1696)\) → \((-1,-1,e\left(\frac{17}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 1815 }(1649, a) \) \(1\)\(1\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{1}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1815 }(1649,a) \;\) at \(\;a = \) e.g. 2