Properties

Label 1815.bd
Modulus $1815$
Conductor $1815$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,11,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(164,1815)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1815\)
Conductor: \(1815\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.43062966214595858730535497699537467025089813545751953125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(17\) \(19\) \(23\)
\(\chi_{1815}(164,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{1815}(329,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{1815}(494,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{1815}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{1815}(824,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{1815}(989,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{1815}(1154,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{1815}(1319,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{1815}(1484,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{1815}(1649,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{11}\right)\)