Properties

Label 1800.71
Modulus $1800$
Conductor $300$
Order $10$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,0,5,6]))
 
Copy content pari:[g,chi] = znchar(Mod(71,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(300\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{300}(71,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1800.bq

\(\chi_{1800}(71,\cdot)\) \(\chi_{1800}(431,\cdot)\) \(\chi_{1800}(791,\cdot)\) \(\chi_{1800}(1511,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.37968750000000000.1

Values on generators

\((1351,901,1001,577)\) → \((-1,1,-1,e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(71, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(71,a) \;\) at \(\;a = \) e.g. 2