sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,10,11]))
pari:[g,chi] = znchar(Mod(1673,1800))
\(\chi_{1800}(17,\cdot)\)
\(\chi_{1800}(233,\cdot)\)
\(\chi_{1800}(377,\cdot)\)
\(\chi_{1800}(737,\cdot)\)
\(\chi_{1800}(953,\cdot)\)
\(\chi_{1800}(1097,\cdot)\)
\(\chi_{1800}(1313,\cdot)\)
\(\chi_{1800}(1673,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((1,1,-1,e\left(\frac{11}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1800 }(1673, a) \) |
\(1\) | \(1\) | \(-i\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage:chi.jacobi_sum(n)