sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,50,33]))
pari:[g,chi] = znchar(Mod(1373,1800))
Modulus: | \(1800\) | |
Conductor: | \(1800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1800}(77,\cdot)\)
\(\chi_{1800}(173,\cdot)\)
\(\chi_{1800}(317,\cdot)\)
\(\chi_{1800}(437,\cdot)\)
\(\chi_{1800}(533,\cdot)\)
\(\chi_{1800}(653,\cdot)\)
\(\chi_{1800}(677,\cdot)\)
\(\chi_{1800}(797,\cdot)\)
\(\chi_{1800}(1013,\cdot)\)
\(\chi_{1800}(1037,\cdot)\)
\(\chi_{1800}(1253,\cdot)\)
\(\chi_{1800}(1373,\cdot)\)
\(\chi_{1800}(1397,\cdot)\)
\(\chi_{1800}(1517,\cdot)\)
\(\chi_{1800}(1613,\cdot)\)
\(\chi_{1800}(1733,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{11}{20}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1800 }(1373, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) |
sage:chi.jacobi_sum(n)