Properties

Label 1764.ce
Modulus $1764$
Conductor $1764$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([21,14,29])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(103,1764)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1764\)
Conductor: \(1764\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.272018952124861435139193115870691546077971916868404958924735840700688722215619164268098368399776141017088.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{1764}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(1\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{1764}(115,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(1\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{1764}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(1\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{1764}(367,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(1\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{1764}(859,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(1\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{1764}(871,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(1\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{1764}(1111,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(1\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{1764}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(1\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{1764}(1363,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(1\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{1764}(1375,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(1\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{1764}(1615,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(1\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{1764}(1627,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(1\) \(e\left(\frac{19}{21}\right)\)