sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1764, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,28,17]))
pari:[g,chi] = znchar(Mod(1447,1764))
Modulus: | \(1764\) | |
Conductor: | \(1764\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1764}(187,\cdot)\)
\(\chi_{1764}(283,\cdot)\)
\(\chi_{1764}(439,\cdot)\)
\(\chi_{1764}(535,\cdot)\)
\(\chi_{1764}(691,\cdot)\)
\(\chi_{1764}(787,\cdot)\)
\(\chi_{1764}(943,\cdot)\)
\(\chi_{1764}(1039,\cdot)\)
\(\chi_{1764}(1291,\cdot)\)
\(\chi_{1764}(1447,\cdot)\)
\(\chi_{1764}(1543,\cdot)\)
\(\chi_{1764}(1699,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((883,785,1081)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{17}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1764 }(1447, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{20}{21}\right)\) |
sage:chi.jacobi_sum(n)