Properties

Label 1710.1429
Modulus $1710$
Conductor $855$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([12,9,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1429,1710))
 

Basic properties

Modulus: \(1710\)
Conductor: \(855\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{855}(574,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1710.dc

\(\chi_{1710}(499,\cdot)\) \(\chi_{1710}(709,\cdot)\) \(\chi_{1710}(1309,\cdot)\) \(\chi_{1710}(1339,\cdot)\) \(\chi_{1710}(1429,\cdot)\) \(\chi_{1710}(1669,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((191,1027,1351)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1710 }(1429, a) \) \(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(1\)\(-1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{17}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1710 }(1429,a) \;\) at \(\;a = \) e.g. 2