Properties

Label 16830.js
Modulus $16830$
Conductor $2805$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,20,24,25])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(107,16830)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(16830\)
Conductor: \(2805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2805.fl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\) \(47\)
\(\chi_{16830}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(503,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(2987,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(3203,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(4193,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(4517,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(4967,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(5777,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(6047,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(6497,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(7163,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(7757,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(8027,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(8153,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(9323,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(10313,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(10853,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(11843,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(11897,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(12383,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(13283,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(13373,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(13427,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(13697,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(13877,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(14273,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{16830}(14813,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(14957,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{16830}(15407,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{16830}(15677,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{16830}(15803,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{5}\right)\)