Properties

Label 16830.4517
Modulus $16830$
Conductor $2805$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,20,56,65]))
 
Copy content pari:[g,chi] = znchar(Mod(4517,16830))
 

Basic properties

Modulus: \(16830\)
Conductor: \(2805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2805}(1712,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 16830.js

\(\chi_{16830}(107,\cdot)\) \(\chi_{16830}(503,\cdot)\) \(\chi_{16830}(2987,\cdot)\) \(\chi_{16830}(3203,\cdot)\) \(\chi_{16830}(4193,\cdot)\) \(\chi_{16830}(4517,\cdot)\) \(\chi_{16830}(4967,\cdot)\) \(\chi_{16830}(5777,\cdot)\) \(\chi_{16830}(6047,\cdot)\) \(\chi_{16830}(6497,\cdot)\) \(\chi_{16830}(7163,\cdot)\) \(\chi_{16830}(7757,\cdot)\) \(\chi_{16830}(8027,\cdot)\) \(\chi_{16830}(8153,\cdot)\) \(\chi_{16830}(9323,\cdot)\) \(\chi_{16830}(10313,\cdot)\) \(\chi_{16830}(10853,\cdot)\) \(\chi_{16830}(11843,\cdot)\) \(\chi_{16830}(11897,\cdot)\) \(\chi_{16830}(12383,\cdot)\) \(\chi_{16830}(13283,\cdot)\) \(\chi_{16830}(13373,\cdot)\) \(\chi_{16830}(13427,\cdot)\) \(\chi_{16830}(13697,\cdot)\) \(\chi_{16830}(13877,\cdot)\) \(\chi_{16830}(14273,\cdot)\) \(\chi_{16830}(14813,\cdot)\) \(\chi_{16830}(14957,\cdot)\) \(\chi_{16830}(15407,\cdot)\) \(\chi_{16830}(15677,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((7481,3367,1531,8911)\) → \((-1,i,e\left(\frac{7}{10}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 16830 }(4517, a) \) \(1\)\(1\)\(e\left(\frac{7}{80}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{37}{80}\right)\)\(e\left(\frac{41}{80}\right)\)\(e\left(\frac{37}{80}\right)\)\(e\left(\frac{43}{80}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 16830 }(4517,a) \;\) at \(\;a = \) e.g. 2