Properties

Label 164025.43
Modulus $164025$
Conductor $32805$
Order $8748$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164025, base_ring=CyclotomicField(8748)) M = H._module chi = DirichletCharacter(H, M([4796,6561]))
 
Copy content pari:[g,chi] = znchar(Mod(43,164025))
 

Basic properties

Modulus: \(164025\)
Conductor: \(32805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8748\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{32805}(43,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 164025.di

\(\chi_{164025}(7,\cdot)\) \(\chi_{164025}(43,\cdot)\) \(\chi_{164025}(157,\cdot)\) \(\chi_{164025}(193,\cdot)\) \(\chi_{164025}(232,\cdot)\) \(\chi_{164025}(268,\cdot)\) \(\chi_{164025}(382,\cdot)\) \(\chi_{164025}(418,\cdot)\) \(\chi_{164025}(457,\cdot)\) \(\chi_{164025}(493,\cdot)\) \(\chi_{164025}(607,\cdot)\) \(\chi_{164025}(643,\cdot)\) \(\chi_{164025}(682,\cdot)\) \(\chi_{164025}(718,\cdot)\) \(\chi_{164025}(832,\cdot)\) \(\chi_{164025}(868,\cdot)\) \(\chi_{164025}(907,\cdot)\) \(\chi_{164025}(943,\cdot)\) \(\chi_{164025}(1057,\cdot)\) \(\chi_{164025}(1093,\cdot)\) \(\chi_{164025}(1132,\cdot)\) \(\chi_{164025}(1168,\cdot)\) \(\chi_{164025}(1282,\cdot)\) \(\chi_{164025}(1318,\cdot)\) \(\chi_{164025}(1357,\cdot)\) \(\chi_{164025}(1393,\cdot)\) \(\chi_{164025}(1507,\cdot)\) \(\chi_{164025}(1543,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{8748})$
Fixed field: Number field defined by a degree 8748 polynomial (not computed)

Values on generators

\((59051,104977)\) → \((e\left(\frac{1199}{2187}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 164025 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{2609}{8748}\right)\)\(e\left(\frac{2609}{4374}\right)\)\(e\left(\frac{785}{8748}\right)\)\(e\left(\frac{2609}{2916}\right)\)\(e\left(\frac{575}{2187}\right)\)\(e\left(\frac{4267}{8748}\right)\)\(e\left(\frac{1697}{4374}\right)\)\(e\left(\frac{422}{2187}\right)\)\(e\left(\frac{1483}{2916}\right)\)\(e\left(\frac{1225}{1458}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 164025 }(43,a) \;\) at \(\;a = \) e.g. 2