sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(32805, base_ring=CyclotomicField(8748))
M = H._module
chi = DirichletCharacter(H, M([4796,6561]))
pari:[g,chi] = znchar(Mod(43,32805))
| Modulus: | \(32805\) | |
| Conductor: | \(32805\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(8748\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{32805}(7,\cdot)\)
\(\chi_{32805}(13,\cdot)\)
\(\chi_{32805}(22,\cdot)\)
\(\chi_{32805}(43,\cdot)\)
\(\chi_{32805}(52,\cdot)\)
\(\chi_{32805}(58,\cdot)\)
\(\chi_{32805}(67,\cdot)\)
\(\chi_{32805}(88,\cdot)\)
\(\chi_{32805}(97,\cdot)\)
\(\chi_{32805}(103,\cdot)\)
\(\chi_{32805}(112,\cdot)\)
\(\chi_{32805}(133,\cdot)\)
\(\chi_{32805}(142,\cdot)\)
\(\chi_{32805}(148,\cdot)\)
\(\chi_{32805}(157,\cdot)\)
\(\chi_{32805}(178,\cdot)\)
\(\chi_{32805}(187,\cdot)\)
\(\chi_{32805}(193,\cdot)\)
\(\chi_{32805}(202,\cdot)\)
\(\chi_{32805}(223,\cdot)\)
\(\chi_{32805}(232,\cdot)\)
\(\chi_{32805}(238,\cdot)\)
\(\chi_{32805}(247,\cdot)\)
\(\chi_{32805}(268,\cdot)\)
\(\chi_{32805}(277,\cdot)\)
\(\chi_{32805}(283,\cdot)\)
\(\chi_{32805}(292,\cdot)\)
\(\chi_{32805}(313,\cdot)\)
\(\chi_{32805}(322,\cdot)\)
\(\chi_{32805}(328,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((26246,6562)\) → \((e\left(\frac{1199}{2187}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 32805 }(43, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2609}{8748}\right)\) | \(e\left(\frac{2609}{4374}\right)\) | \(e\left(\frac{785}{8748}\right)\) | \(e\left(\frac{2609}{2916}\right)\) | \(e\left(\frac{575}{2187}\right)\) | \(e\left(\frac{4267}{8748}\right)\) | \(e\left(\frac{1697}{4374}\right)\) | \(e\left(\frac{422}{2187}\right)\) | \(e\left(\frac{1483}{2916}\right)\) | \(e\left(\frac{1225}{1458}\right)\) |
sage:chi.jacobi_sum(n)