Properties

Label 163.i
Modulus $163$
Conductor $163$
Order $81$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(163, base_ring=CyclotomicField(162)) M = H._module chi = DirichletCharacter(H, M([2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,163)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(163\)
Conductor: \(163\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(81\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{81})$
Fixed field: Number field defined by a degree 81 polynomial

First 31 of 54 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{163}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{81}\right)\) \(e\left(\frac{20}{81}\right)\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{16}{81}\right)\) \(e\left(\frac{47}{81}\right)\)
\(\chi_{163}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{81}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{77}{81}\right)\) \(e\left(\frac{49}{81}\right)\)
\(\chi_{163}(10,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{81}\right)\) \(e\left(\frac{79}{81}\right)\) \(e\left(\frac{16}{81}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{17}{81}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{77}{81}\right)\) \(e\left(\frac{47}{81}\right)\) \(e\left(\frac{52}{81}\right)\)
\(\chi_{163}(14,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{22}{81}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{38}{81}\right)\)
\(\chi_{163}(15,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{81}\right)\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{22}{81}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{52}{81}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{53}{81}\right)\)
\(\chi_{163}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{4}{81}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{32}{81}\right)\) \(e\left(\frac{13}{81}\right)\)
\(\chi_{163}(24,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{81}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{23}{81}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{70}{81}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{55}{81}\right)\) \(e\left(\frac{22}{81}\right)\) \(e\left(\frac{14}{81}\right)\)
\(\chi_{163}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{34}{81}\right)\) \(e\left(\frac{52}{81}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{7}{81}\right)\)
\(\chi_{163}(33,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{22}{81}\right)\) \(e\left(\frac{67}{81}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{56}{81}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{50}{81}\right)\) \(e\left(\frac{76}{81}\right)\)
\(\chi_{163}(34,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{13}{81}\right)\) \(e\left(\frac{58}{81}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{67}{81}\right)\)
\(\chi_{163}(35,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{70}{81}\right)\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{56}{81}\right)\) \(e\left(\frac{43}{81}\right)\)
\(\chi_{163}(39,\cdot)\) \(1\) \(1\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{62}{81}\right)\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{43}{81}\right)\) \(e\left(\frac{1}{81}\right)\) \(e\left(\frac{8}{81}\right)\)
\(\chi_{163}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{79}{81}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{8}{81}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{34}{81}\right)\)
\(\chi_{163}(43,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{81}\right)\) \(e\left(\frac{56}{81}\right)\) \(e\left(\frac{38}{81}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{10}{81}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{2}{81}\right)\)
\(\chi_{163}(46,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{81}\right)\) \(e\left(\frac{19}{81}\right)\) \(e\left(\frac{10}{81}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{38}{81}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{73}{81}\right)\)
\(\chi_{163}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{81}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{50}{81}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{62}{81}\right)\) \(e\left(\frac{10}{81}\right)\)
\(\chi_{163}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{64}{81}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{4}{81}\right)\) \(e\left(\frac{34}{81}\right)\) \(e\left(\frac{29}{81}\right)\)
\(\chi_{163}(51,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{81}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{77}{81}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{16}{81}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{1}{81}\right)\) \(e\left(\frac{49}{81}\right)\) \(e\left(\frac{68}{81}\right)\)
\(\chi_{163}(54,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{43}{81}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{5}{81}\right)\) \(e\left(\frac{2}{81}\right)\) \(e\left(\frac{16}{81}\right)\)
\(\chi_{163}(55,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{62}{81}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{10}{81}\right)\) \(e\left(\frac{80}{81}\right)\)
\(\chi_{163}(56,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{81}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{76}{81}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{20}{81}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{62}{81}\right)\) \(e\left(\frac{41}{81}\right)\) \(e\left(\frac{4}{81}\right)\)
\(\chi_{163}(57,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{81}\right)\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{64}{81}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{68}{81}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{65}{81}\right)\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{46}{81}\right)\)
\(\chi_{163}(60,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{14}{81}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{53}{81}\right)\) \(e\left(\frac{19}{81}\right)\)
\(\chi_{163}(62,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{81}\right)\) \(e\left(\frac{52}{81}\right)\) \(e\left(\frac{70}{81}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{23}{81}\right)\) \(e\left(\frac{74}{81}\right)\) \(e\left(\frac{25}{81}\right)\)
\(\chi_{163}(69,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{81}\right)\) \(e\left(\frac{47}{81}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{13}{81}\right)\) \(e\left(\frac{70}{81}\right)\) \(e\left(\frac{74}{81}\right)\)
\(\chi_{163}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{11}{81}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{58}{81}\right)\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{56}{81}\right)\)
\(\chi_{163}(74,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{81}\right)\) \(e\left(\frac{16}{81}\right)\) \(e\left(\frac{34}{81}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{26}{81}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{32}{81}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{70}{81}\right)\)
\(\chi_{163}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{81}\right)\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{80}{81}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{4}{81}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{61}{81}\right)\) \(e\left(\frac{73}{81}\right)\) \(e\left(\frac{17}{81}\right)\)
\(\chi_{163}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{81}\right)\) \(e\left(\frac{28}{81}\right)\) \(e\left(\frac{19}{81}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{5}{81}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{56}{81}\right)\) \(e\left(\frac{71}{81}\right)\) \(e\left(\frac{1}{81}\right)\)
\(\chi_{163}(84,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{81}\right)\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{14}{81}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{25}{81}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{37}{81}\right)\) \(e\left(\frac{31}{81}\right)\) \(e\left(\frac{5}{81}\right)\)
\(\chi_{163}(87,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{81}\right)\) \(e\left(\frac{55}{81}\right)\) \(e\left(\frac{46}{81}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{59}{81}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{29}{81}\right)\) \(e\left(\frac{44}{81}\right)\) \(e\left(\frac{28}{81}\right)\)