Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 163 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 81 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 163.i |
Orbit index | = | 9 |
Galois orbit
\(\chi_{163}(4,\cdot)\) \(\chi_{163}(9,\cdot)\) \(\chi_{163}(10,\cdot)\) \(\chi_{163}(14,\cdot)\) \(\chi_{163}(15,\cdot)\) \(\chi_{163}(16,\cdot)\) \(\chi_{163}(24,\cdot)\) \(\chi_{163}(26,\cdot)\) \(\chi_{163}(33,\cdot)\) \(\chi_{163}(34,\cdot)\) \(\chi_{163}(35,\cdot)\) \(\chi_{163}(39,\cdot)\) \(\chi_{163}(41,\cdot)\) \(\chi_{163}(43,\cdot)\) \(\chi_{163}(46,\cdot)\) \(\chi_{163}(47,\cdot)\) \(\chi_{163}(49,\cdot)\) \(\chi_{163}(51,\cdot)\) \(\chi_{163}(54,\cdot)\) \(\chi_{163}(55,\cdot)\) \(\chi_{163}(56,\cdot)\) \(\chi_{163}(57,\cdot)\) \(\chi_{163}(60,\cdot)\) \(\chi_{163}(62,\cdot)\) \(\chi_{163}(69,\cdot)\) \(\chi_{163}(71,\cdot)\) \(\chi_{163}(74,\cdot)\) \(\chi_{163}(81,\cdot)\) \(\chi_{163}(83,\cdot)\) \(\chi_{163}(84,\cdot)\) ...
Values on generators
\(2\) → \(e\left(\frac{37}{81}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(1\) | \(1\) | \(e\left(\frac{37}{81}\right)\) | \(e\left(\frac{11}{81}\right)\) | \(e\left(\frac{74}{81}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{16}{27}\right)\) | \(e\left(\frac{28}{81}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{22}{81}\right)\) | \(e\left(\frac{25}{81}\right)\) | \(e\left(\frac{38}{81}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{81})\) |