sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1620, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([54,100,81]))
pari:[g,chi] = znchar(Mod(643,1620))
| Modulus: | \(1620\) | |
| Conductor: | \(1620\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1620}(7,\cdot)\)
\(\chi_{1620}(43,\cdot)\)
\(\chi_{1620}(67,\cdot)\)
\(\chi_{1620}(103,\cdot)\)
\(\chi_{1620}(187,\cdot)\)
\(\chi_{1620}(223,\cdot)\)
\(\chi_{1620}(247,\cdot)\)
\(\chi_{1620}(283,\cdot)\)
\(\chi_{1620}(367,\cdot)\)
\(\chi_{1620}(403,\cdot)\)
\(\chi_{1620}(427,\cdot)\)
\(\chi_{1620}(463,\cdot)\)
\(\chi_{1620}(547,\cdot)\)
\(\chi_{1620}(583,\cdot)\)
\(\chi_{1620}(607,\cdot)\)
\(\chi_{1620}(643,\cdot)\)
\(\chi_{1620}(727,\cdot)\)
\(\chi_{1620}(763,\cdot)\)
\(\chi_{1620}(787,\cdot)\)
\(\chi_{1620}(823,\cdot)\)
\(\chi_{1620}(907,\cdot)\)
\(\chi_{1620}(943,\cdot)\)
\(\chi_{1620}(967,\cdot)\)
\(\chi_{1620}(1003,\cdot)\)
\(\chi_{1620}(1087,\cdot)\)
\(\chi_{1620}(1123,\cdot)\)
\(\chi_{1620}(1147,\cdot)\)
\(\chi_{1620}(1183,\cdot)\)
\(\chi_{1620}(1267,\cdot)\)
\(\chi_{1620}(1303,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((811,1541,1297)\) → \((-1,e\left(\frac{25}{27}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1620 }(643, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{108}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{2}{27}\right)\) |
sage:chi.jacobi_sum(n)