# Properties

 Modulus $1620$ Structure $$C_{2}\times C_{2}\times C_{108}$$ Order $432$

Show commands: Pari/GP / SageMath

sage: H = DirichletGroup(1620)

pari: g = idealstar(,1620,2)

## Character group

 sage: G.order()  pari: g.no Order = 432 sage: H.invariants()  pari: g.cyc Structure = $$C_{2}\times C_{2}\times C_{108}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{1620}(811,\cdot)$, $\chi_{1620}(1541,\cdot)$, $\chi_{1620}(1297,\cdot)$

## First 32 of 432 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$
$$\chi_{1620}(1,\cdot)$$ 1620.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{1620}(7,\cdot)$$ 1620.bv 108 yes $$1$$ $$1$$ $$e\left(\frac{53}{108}\right)$$ $$e\left(\frac{19}{54}\right)$$ $$e\left(\frac{13}{108}\right)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{55}{108}\right)$$ $$e\left(\frac{25}{54}\right)$$ $$e\left(\frac{23}{54}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{19}{27}\right)$$
$$\chi_{1620}(11,\cdot)$$ 1620.bo 54 no $$1$$ $$1$$ $$e\left(\frac{19}{54}\right)$$ $$e\left(\frac{17}{27}\right)$$ $$e\left(\frac{25}{27}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{4}{27}\right)$$ $$e\left(\frac{49}{54}\right)$$ $$e\left(\frac{17}{54}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{41}{54}\right)$$
$$\chi_{1620}(13,\cdot)$$ 1620.bu 108 no $$-1$$ $$1$$ $$e\left(\frac{13}{108}\right)$$ $$e\left(\frac{25}{27}\right)$$ $$e\left(\frac{47}{108}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{95}{108}\right)$$ $$e\left(\frac{53}{54}\right)$$ $$e\left(\frac{26}{27}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{23}{27}\right)$$
$$\chi_{1620}(17,\cdot)$$ 1620.bk 36 no $$1$$ $$1$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{18}\right)$$
$$\chi_{1620}(19,\cdot)$$ 1620.bf 18 no $$-1$$ $$1$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{9}\right)$$
$$\chi_{1620}(23,\cdot)$$ 1620.bt 108 yes $$-1$$ $$1$$ $$e\left(\frac{55}{108}\right)$$ $$e\left(\frac{4}{27}\right)$$ $$e\left(\frac{95}{108}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{107}{108}\right)$$ $$e\left(\frac{1}{27}\right)$$ $$e\left(\frac{31}{54}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{43}{54}\right)$$
$$\chi_{1620}(29,\cdot)$$ 1620.bl 54 no $$-1$$ $$1$$ $$e\left(\frac{25}{54}\right)$$ $$e\left(\frac{49}{54}\right)$$ $$e\left(\frac{53}{54}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{27}\right)$$ $$e\left(\frac{19}{54}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{17}{54}\right)$$
$$\chi_{1620}(31,\cdot)$$ 1620.bn 54 no $$-1$$ $$1$$ $$e\left(\frac{23}{54}\right)$$ $$e\left(\frac{17}{54}\right)$$ $$e\left(\frac{26}{27}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{31}{54}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{49}{54}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{17}{27}\right)$$
$$\chi_{1620}(37,\cdot)$$ 1620.bj 36 no $$-1$$ $$1$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{9}\right)$$
$$\chi_{1620}(41,\cdot)$$ 1620.bq 54 no $$-1$$ $$1$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{41}{54}\right)$$ $$e\left(\frac{23}{27}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{43}{54}\right)$$ $$e\left(\frac{17}{54}\right)$$ $$e\left(\frac{17}{27}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{54}\right)$$
$$\chi_{1620}(43,\cdot)$$ 1620.bv 108 yes $$1$$ $$1$$ $$e\left(\frac{83}{108}\right)$$ $$e\left(\frac{43}{54}\right)$$ $$e\left(\frac{55}{108}\right)$$ $$e\left(\frac{7}{36}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{25}{108}\right)$$ $$e\left(\frac{31}{54}\right)$$ $$e\left(\frac{35}{54}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{16}{27}\right)$$
$$\chi_{1620}(47,\cdot)$$ 1620.bt 108 yes $$-1$$ $$1$$ $$e\left(\frac{89}{108}\right)$$ $$e\left(\frac{5}{27}\right)$$ $$e\left(\frac{85}{108}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{73}{108}\right)$$ $$e\left(\frac{8}{27}\right)$$ $$e\left(\frac{5}{54}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{47}{54}\right)$$
$$\chi_{1620}(49,\cdot)$$ 1620.br 54 no $$1$$ $$1$$ $$e\left(\frac{53}{54}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{13}{54}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{54}\right)$$ $$e\left(\frac{25}{27}\right)$$ $$e\left(\frac{23}{27}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{11}{27}\right)$$
$$\chi_{1620}(53,\cdot)$$ 1620.x 12 no $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{1620}(59,\cdot)$$ 1620.bm 54 yes $$1$$ $$1$$ $$e\left(\frac{4}{27}\right)$$ $$e\left(\frac{10}{27}\right)$$ $$e\left(\frac{31}{54}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{19}{54}\right)$$ $$e\left(\frac{5}{54}\right)$$ $$e\left(\frac{37}{54}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{13}{54}\right)$$
$$\chi_{1620}(61,\cdot)$$ 1620.bg 27 no $$1$$ $$1$$ $$e\left(\frac{11}{27}\right)$$ $$e\left(\frac{14}{27}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{16}{27}\right)$$ $$e\left(\frac{17}{27}\right)$$ $$e\left(\frac{7}{27}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{27}\right)$$
$$\chi_{1620}(67,\cdot)$$ 1620.bv 108 yes $$1$$ $$1$$ $$e\left(\frac{85}{108}\right)$$ $$e\left(\frac{5}{54}\right)$$ $$e\left(\frac{29}{108}\right)$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{23}{108}\right)$$ $$e\left(\frac{35}{54}\right)$$ $$e\left(\frac{43}{54}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{5}{27}\right)$$
$$\chi_{1620}(71,\cdot)$$ 1620.be 18 no $$1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{18}\right)$$
$$\chi_{1620}(73,\cdot)$$ 1620.bj 36 no $$-1$$ $$1$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{4}{9}\right)$$
$$\chi_{1620}(77,\cdot)$$ 1620.bs 108 no $$1$$ $$1$$ $$e\left(\frac{91}{108}\right)$$ $$e\left(\frac{53}{54}\right)$$ $$e\left(\frac{5}{108}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{71}{108}\right)$$ $$e\left(\frac{10}{27}\right)$$ $$e\left(\frac{20}{27}\right)$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{25}{54}\right)$$
$$\chi_{1620}(79,\cdot)$$ 1620.bp 54 yes $$-1$$ $$1$$ $$e\left(\frac{8}{27}\right)$$ $$e\left(\frac{13}{54}\right)$$ $$e\left(\frac{35}{54}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{5}{27}\right)$$ $$e\left(\frac{47}{54}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{13}{27}\right)$$
$$\chi_{1620}(83,\cdot)$$ 1620.bt 108 yes $$-1$$ $$1$$ $$e\left(\frac{59}{108}\right)$$ $$e\left(\frac{20}{27}\right)$$ $$e\left(\frac{43}{108}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{103}{108}\right)$$ $$e\left(\frac{5}{27}\right)$$ $$e\left(\frac{47}{54}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{53}{54}\right)$$
$$\chi_{1620}(89,\cdot)$$ 1620.z 18 no $$-1$$ $$1$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{17}{18}\right)$$
$$\chi_{1620}(91,\cdot)$$ 1620.ba 18 no $$-1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{9}\right)$$
$$\chi_{1620}(97,\cdot)$$ 1620.bu 108 no $$-1$$ $$1$$ $$e\left(\frac{47}{108}\right)$$ $$e\left(\frac{26}{27}\right)$$ $$e\left(\frac{37}{108}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{61}{108}\right)$$ $$e\left(\frac{13}{54}\right)$$ $$e\left(\frac{13}{27}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{25}{27}\right)$$
$$\chi_{1620}(101,\cdot)$$ 1620.bq 54 no $$-1$$ $$1$$ $$e\left(\frac{11}{27}\right)$$ $$e\left(\frac{1}{54}\right)$$ $$e\left(\frac{19}{27}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{5}{54}\right)$$ $$e\left(\frac{7}{54}\right)$$ $$e\left(\frac{7}{27}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{29}{54}\right)$$
$$\chi_{1620}(103,\cdot)$$ 1620.bv 108 yes $$1$$ $$1$$ $$e\left(\frac{43}{108}\right)$$ $$e\left(\frac{47}{54}\right)$$ $$e\left(\frac{35}{108}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{65}{108}\right)$$ $$e\left(\frac{5}{54}\right)$$ $$e\left(\frac{37}{54}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{20}{27}\right)$$
$$\chi_{1620}(107,\cdot)$$ 1620.w 12 no $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{1620}(109,\cdot)$$ 1620.r 6 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{1620}(113,\cdot)$$ 1620.bs 108 no $$1$$ $$1$$ $$e\left(\frac{25}{108}\right)$$ $$e\left(\frac{11}{54}\right)$$ $$e\left(\frac{107}{108}\right)$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{29}{108}\right)$$ $$e\left(\frac{25}{27}\right)$$ $$e\left(\frac{23}{27}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{49}{54}\right)$$
$$\chi_{1620}(119,\cdot)$$ 1620.bm 54 yes $$1$$ $$1$$ $$e\left(\frac{14}{27}\right)$$ $$e\left(\frac{8}{27}\right)$$ $$e\left(\frac{41}{54}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{53}{54}\right)$$ $$e\left(\frac{31}{54}\right)$$ $$e\left(\frac{35}{54}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{54}\right)$$