sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1620, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([54,22,81]))
pari:[g,chi] = znchar(Mod(23,1620))
| Modulus: | \(1620\) | |
| Conductor: | \(1620\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1620}(23,\cdot)\)
\(\chi_{1620}(47,\cdot)\)
\(\chi_{1620}(83,\cdot)\)
\(\chi_{1620}(167,\cdot)\)
\(\chi_{1620}(203,\cdot)\)
\(\chi_{1620}(227,\cdot)\)
\(\chi_{1620}(263,\cdot)\)
\(\chi_{1620}(347,\cdot)\)
\(\chi_{1620}(383,\cdot)\)
\(\chi_{1620}(407,\cdot)\)
\(\chi_{1620}(443,\cdot)\)
\(\chi_{1620}(527,\cdot)\)
\(\chi_{1620}(563,\cdot)\)
\(\chi_{1620}(587,\cdot)\)
\(\chi_{1620}(623,\cdot)\)
\(\chi_{1620}(707,\cdot)\)
\(\chi_{1620}(743,\cdot)\)
\(\chi_{1620}(767,\cdot)\)
\(\chi_{1620}(803,\cdot)\)
\(\chi_{1620}(887,\cdot)\)
\(\chi_{1620}(923,\cdot)\)
\(\chi_{1620}(947,\cdot)\)
\(\chi_{1620}(983,\cdot)\)
\(\chi_{1620}(1067,\cdot)\)
\(\chi_{1620}(1103,\cdot)\)
\(\chi_{1620}(1127,\cdot)\)
\(\chi_{1620}(1163,\cdot)\)
\(\chi_{1620}(1247,\cdot)\)
\(\chi_{1620}(1283,\cdot)\)
\(\chi_{1620}(1307,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((811,1541,1297)\) → \((-1,e\left(\frac{11}{54}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1620 }(23, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{107}{108}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{43}{54}\right)\) |
sage:chi.jacobi_sum(n)