sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([0,35,76]))
pari:[g,chi] = znchar(Mod(813,1600))
| Modulus: | \(1600\) | |
| Conductor: | \(1600\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1600}(13,\cdot)\)
\(\chi_{1600}(37,\cdot)\)
\(\chi_{1600}(117,\cdot)\)
\(\chi_{1600}(173,\cdot)\)
\(\chi_{1600}(197,\cdot)\)
\(\chi_{1600}(253,\cdot)\)
\(\chi_{1600}(277,\cdot)\)
\(\chi_{1600}(333,\cdot)\)
\(\chi_{1600}(413,\cdot)\)
\(\chi_{1600}(437,\cdot)\)
\(\chi_{1600}(517,\cdot)\)
\(\chi_{1600}(573,\cdot)\)
\(\chi_{1600}(597,\cdot)\)
\(\chi_{1600}(653,\cdot)\)
\(\chi_{1600}(677,\cdot)\)
\(\chi_{1600}(733,\cdot)\)
\(\chi_{1600}(813,\cdot)\)
\(\chi_{1600}(837,\cdot)\)
\(\chi_{1600}(917,\cdot)\)
\(\chi_{1600}(973,\cdot)\)
\(\chi_{1600}(997,\cdot)\)
\(\chi_{1600}(1053,\cdot)\)
\(\chi_{1600}(1077,\cdot)\)
\(\chi_{1600}(1133,\cdot)\)
\(\chi_{1600}(1213,\cdot)\)
\(\chi_{1600}(1237,\cdot)\)
\(\chi_{1600}(1317,\cdot)\)
\(\chi_{1600}(1373,\cdot)\)
\(\chi_{1600}(1397,\cdot)\)
\(\chi_{1600}(1453,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1151,901,577)\) → \((1,e\left(\frac{7}{16}\right),e\left(\frac{19}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1600 }(813, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{77}{80}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{49}{80}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{80}\right)\) | \(e\left(\frac{7}{80}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{71}{80}\right)\) |
sage:chi.jacobi_sum(n)