Properties

Label 1600.cn
Modulus $1600$
Conductor $1600$
Order $80$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([0,75,76])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,1600)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1600\)
Conductor: \(1600\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{1600}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{31}{80}\right)\)
\(\chi_{1600}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{41}{80}\right)\)
\(\chi_{1600}(117,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{37}{80}\right)\)
\(\chi_{1600}(173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{39}{80}\right)\)
\(\chi_{1600}(197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{80}\right)\)
\(\chi_{1600}(253,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{80}\right)\)
\(\chi_{1600}(277,\cdot)\) \(-1\) \(1\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{29}{80}\right)\)
\(\chi_{1600}(333,\cdot)\) \(-1\) \(1\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{47}{80}\right)\)
\(\chi_{1600}(413,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{80}\right)\)
\(\chi_{1600}(437,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{21}{80}\right)\)
\(\chi_{1600}(517,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{80}\right)\)
\(\chi_{1600}(573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{19}{80}\right)\)
\(\chi_{1600}(597,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{80}\right)\)
\(\chi_{1600}(653,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{63}{80}\right)\)
\(\chi_{1600}(677,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{80}\right)\)
\(\chi_{1600}(733,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{27}{80}\right)\)
\(\chi_{1600}(813,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{71}{80}\right)\)
\(\chi_{1600}(837,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{80}\right)\)
\(\chi_{1600}(917,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{77}{80}\right)\)
\(\chi_{1600}(973,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{79}{80}\right)\)
\(\chi_{1600}(997,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{73}{80}\right)\)
\(\chi_{1600}(1053,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{43}{80}\right)\)
\(\chi_{1600}(1077,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{69}{80}\right)\)
\(\chi_{1600}(1133,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{80}\right)\)
\(\chi_{1600}(1213,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{51}{80}\right)\)
\(\chi_{1600}(1237,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{61}{80}\right)\)
\(\chi_{1600}(1317,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{57}{80}\right)\)
\(\chi_{1600}(1373,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{59}{80}\right)\)
\(\chi_{1600}(1397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{53}{80}\right)\)
\(\chi_{1600}(1453,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{23}{80}\right)\)
\(\chi_{1600}(1477,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{49}{80}\right)\)