sage: H = DirichletGroup(16)
pari: g = idealstar(,16,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 8 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{16}(15,\cdot)$, $\chi_{16}(5,\cdot)$ |
Characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) |
---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{16}(1,\cdot)\) | 16.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{16}(3,\cdot)\) | 16.f | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(1\) | \(-1\) | \(i\) | \(i\) |
\(\chi_{16}(5,\cdot)\) | 16.e | 4 | yes | \(1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) |
\(\chi_{16}(7,\cdot)\) | 16.d | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
\(\chi_{16}(9,\cdot)\) | 16.b | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{16}(11,\cdot)\) | 16.f | 4 | yes | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(-i\) |
\(\chi_{16}(13,\cdot)\) | 16.e | 4 | yes | \(1\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) |
\(\chi_{16}(15,\cdot)\) | 16.c | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) |