Properties

Label 1596.1595
Modulus $1596$
Conductor $1596$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1596, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1,1,1,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1595,1596))
 

Kronecker symbol representation

Copy content sage:kronecker_character(1596)
 
Copy content pari:znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{1596}{\bullet}\right)\)

Basic properties

Modulus: \(1596\)
Conductor: \(1596\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1596.p

\(\chi_{1596}(1595,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{399}) \)

Values on generators

\((799,533,913,1009)\) → \((-1,-1,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1596 }(1595, a) \) \(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1596 }(1595,a) \;\) at \(\;a = \) e.g. 2